Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses.

Identifieur interne : 004174 ( Main/Exploration ); précédent : 004173; suivant : 004175

Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses.

Auteurs : Matt Geisler [Suède] ; Malgorzata Wilczynska ; Stanislaw Karpinski ; Leszek A. Kleczkowski

Source :

RBID : pubmed:15803415

Descripteurs français

English descriptors

Abstract

UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of synthesis of sucrose, cellulose, and several other polysaccharides in all plants. The protein is evolutionarily conserved among eukaryotes, but has little relation, aside from its catalytic reaction, to UGPases of prokaryotic origin. Using protein homology modeling strategy, 3D structures for barley, poplar, and Arabidopsis UGPases have been derived, based on recently published crystal structure of human UDP-N-acetylglucosamine pyrophosphorylase. The derived 3D structures correspond to a bowl-shaped protein with the active site at a central groove, and a C-terminal domain that includes a loop (I-loop) possibly involved in dimerization. Data on a plethora of earlier described UGPase mutants from a variety of eukaryotic organisms have been revisited, and we have, in most cases, verified the role of each mutation in enzyme catalysis/regulation/structural integrity. We have also found that one of two alternatively spliced forms of poplar UGPase has a very short I-loop, suggesting differences in oligomerization ability of the two isozymes. The derivation of the structural model for plant UGPase should serve as a useful blueprint for further function/structure studies on this protein.

DOI: 10.1007/s11103-004-4953-x
PubMed: 15803415


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses.</title>
<author>
<name sortKey="Geisler, Matt" sort="Geisler, Matt" uniqKey="Geisler M" first="Matt" last="Geisler">Matt Geisler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87 Umeå</wicri:regionArea>
<wicri:noRegion>901 87 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wilczynska, Malgorzata" sort="Wilczynska, Malgorzata" uniqKey="Wilczynska M" first="Malgorzata" last="Wilczynska">Malgorzata Wilczynska</name>
</author>
<author>
<name sortKey="Karpinski, Stanislaw" sort="Karpinski, Stanislaw" uniqKey="Karpinski S" first="Stanislaw" last="Karpinski">Stanislaw Karpinski</name>
</author>
<author>
<name sortKey="Kleczkowski, Leszek A" sort="Kleczkowski, Leszek A" uniqKey="Kleczkowski L" first="Leszek A" last="Kleczkowski">Leszek A. Kleczkowski</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15803415</idno>
<idno type="pmid">15803415</idno>
<idno type="doi">10.1007/s11103-004-4953-x</idno>
<idno type="wicri:Area/Main/Corpus">004092</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004092</idno>
<idno type="wicri:Area/Main/Curation">004092</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004092</idno>
<idno type="wicri:Area/Main/Exploration">004092</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses.</title>
<author>
<name sortKey="Geisler, Matt" sort="Geisler, Matt" uniqKey="Geisler M" first="Matt" last="Geisler">Matt Geisler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87 Umeå</wicri:regionArea>
<wicri:noRegion>901 87 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wilczynska, Malgorzata" sort="Wilczynska, Malgorzata" uniqKey="Wilczynska M" first="Malgorzata" last="Wilczynska">Malgorzata Wilczynska</name>
</author>
<author>
<name sortKey="Karpinski, Stanislaw" sort="Karpinski, Stanislaw" uniqKey="Karpinski S" first="Stanislaw" last="Karpinski">Stanislaw Karpinski</name>
</author>
<author>
<name sortKey="Kleczkowski, Leszek A" sort="Kleczkowski, Leszek A" uniqKey="Kleczkowski L" first="Leszek A" last="Kleczkowski">Leszek A. Kleczkowski</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternative Splicing (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Eukaryotic Cells (enzymology)</term>
<term>Genetic Variation (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Isoenzymes (chemistry)</term>
<term>Isoenzymes (genetics)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plants (enzymology)</term>
<term>Plants (genetics)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Prokaryotic Cells (enzymology)</term>
<term>Protein Conformation (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>UTP-Glucose-1-Phosphate Uridylyltransferase (chemistry)</term>
<term>UTP-Glucose-1-Phosphate Uridylyltransferase (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules eucaryotes (enzymologie)</term>
<term>Cellules procaryotes (enzymologie)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Isoenzymes (composition chimique)</term>
<term>Isoenzymes (génétique)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plantes (enzymologie)</term>
<term>Plantes (génétique)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>UTP glucose 1-phosphate uridylyltransferase (composition chimique)</term>
<term>UTP glucose 1-phosphate uridylyltransferase (génétique)</term>
<term>Variation génétique (MeSH)</term>
<term>Épissage alternatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Isoenzymes</term>
<term>UTP-Glucose-1-Phosphate Uridylyltransferase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Isoenzymes</term>
<term>UTP glucose 1-phosphate uridylyltransferase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Cellules eucaryotes</term>
<term>Cellules procaryotes</term>
<term>Plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Eukaryotic Cells</term>
<term>Plants</term>
<term>Populus</term>
<term>Prokaryotic Cells</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Isoenzymes</term>
<term>Plants</term>
<term>Populus</term>
<term>UTP-Glucose-1-Phosphate Uridylyltransferase</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Isoenzymes</term>
<term>Plantes</term>
<term>Populus</term>
<term>UTP glucose 1-phosphate uridylyltransferase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alternative Splicing</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Genetic Variation</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Phylogeny</term>
<term>Protein Conformation</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Mutation</term>
<term>Phylogenèse</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Variation génétique</term>
<term>Épissage alternatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of synthesis of sucrose, cellulose, and several other polysaccharides in all plants. The protein is evolutionarily conserved among eukaryotes, but has little relation, aside from its catalytic reaction, to UGPases of prokaryotic origin. Using protein homology modeling strategy, 3D structures for barley, poplar, and Arabidopsis UGPases have been derived, based on recently published crystal structure of human UDP-N-acetylglucosamine pyrophosphorylase. The derived 3D structures correspond to a bowl-shaped protein with the active site at a central groove, and a C-terminal domain that includes a loop (I-loop) possibly involved in dimerization. Data on a plethora of earlier described UGPase mutants from a variety of eukaryotic organisms have been revisited, and we have, in most cases, verified the role of each mutation in enzyme catalysis/regulation/structural integrity. We have also found that one of two alternatively spliced forms of poplar UGPase has a very short I-loop, suggesting differences in oligomerization ability of the two isozymes. The derivation of the structural model for plant UGPase should serve as a useful blueprint for further function/structure studies on this protein.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15803415</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>56</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2004</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses.</ArticleTitle>
<Pagination>
<MedlinePgn>783-94</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of synthesis of sucrose, cellulose, and several other polysaccharides in all plants. The protein is evolutionarily conserved among eukaryotes, but has little relation, aside from its catalytic reaction, to UGPases of prokaryotic origin. Using protein homology modeling strategy, 3D structures for barley, poplar, and Arabidopsis UGPases have been derived, based on recently published crystal structure of human UDP-N-acetylglucosamine pyrophosphorylase. The derived 3D structures correspond to a bowl-shaped protein with the active site at a central groove, and a C-terminal domain that includes a loop (I-loop) possibly involved in dimerization. Data on a plethora of earlier described UGPase mutants from a variety of eukaryotic organisms have been revisited, and we have, in most cases, verified the role of each mutation in enzyme catalysis/regulation/structural integrity. We have also found that one of two alternatively spliced forms of poplar UGPase has a very short I-loop, suggesting differences in oligomerization ability of the two isozymes. The derivation of the structural model for plant UGPase should serve as a useful blueprint for further function/structure studies on this protein.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Geisler</LastName>
<ForeName>Matt</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wilczynska</LastName>
<ForeName>Malgorzata</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karpinski</LastName>
<ForeName>Stanislaw</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kleczkowski</LastName>
<ForeName>Leszek A</ForeName>
<Initials>LA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>03</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.9</RegistryNumber>
<NameOfSubstance UI="D005957">UTP-Glucose-1-Phosphate Uridylyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="N">Alternative Splicing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005057" MajorTopicYN="N">Eukaryotic Cells</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011387" MajorTopicYN="N">Prokaryotic Cells</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005957" MajorTopicYN="N">UTP-Glucose-1-Phosphate Uridylyltransferase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>08</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15803415</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-004-4953-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1998 Oct 16;273(42):27055-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Oct 4;111(1):17-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12372297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Sep 3;30(35):8546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1909568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Jun;7(3):277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 May 11;15(9):3891-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3035502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1990 Aug;108(2):321-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2229031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Jan 3;1476(1):103-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10606772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 May 8;170(2):227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8666250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Mar 1;236(2):723-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8612650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Mar;212(4):598-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Oct 1;367(Pt 1):295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12088504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Jan 15;235(1-2):173-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8631325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Mar 15;370(Pt 3):995-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12460121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 May 18;38(20):6380-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1995 Oct 15;233(2):520-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7588797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Mar 29;257(2):342-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8609628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Aug;105(2-3):216-221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Sep 19;272(38):23784-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9295324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Aug 2;18(15):4096-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10428949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Feb 15;354(Pt 1):67-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11171080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):912-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem. 1991;23(1):123-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2022293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 6;277(36):32430-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1989 Sep;106(3):528-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2558111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Mar;162(3):343-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15832687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Nov;121(3):695-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10557217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Mar;101(3):1073-1080</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1993 Jul;114(1):61-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8407878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2004 Jun;5(2):150-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15260895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Sep 3;30(35):8541-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1909567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Oct 16;19(20):5269-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11032794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Aug;161(8):947-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15384406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Nov 15;20(22):6191-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11707391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Sep;24(9):364-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10470037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Mar 14;302(3):435-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Jan 1;313 ( Pt 1):149-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8546676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:509-540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3635-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824383</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Karpinski, Stanislaw" sort="Karpinski, Stanislaw" uniqKey="Karpinski S" first="Stanislaw" last="Karpinski">Stanislaw Karpinski</name>
<name sortKey="Kleczkowski, Leszek A" sort="Kleczkowski, Leszek A" uniqKey="Kleczkowski L" first="Leszek A" last="Kleczkowski">Leszek A. Kleczkowski</name>
<name sortKey="Wilczynska, Malgorzata" sort="Wilczynska, Malgorzata" uniqKey="Wilczynska M" first="Malgorzata" last="Wilczynska">Malgorzata Wilczynska</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Geisler, Matt" sort="Geisler, Matt" uniqKey="Geisler M" first="Matt" last="Geisler">Matt Geisler</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004174 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004174 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15803415
   |texte=   Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15803415" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020